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The classical Kaluza-Klein  unified field theory has previously been extended to 
unify and geometrize gravitational and gauge fields, through a study of the 
geometry of a bundle space P over space-time. Here, we examine the physical 
relevance of the Laplace operator on the complex-valued functions on P. The 
spectrum and eigenspaces are shown (via the Peter-Weyl theorem) to determine 
the possible masses of any type of particle field. In the Euclidean case, we prove 
that zero-mass particles necessarily come in infinite families. Also, lower bounds  
on masses of particles of a given type are obtained in terms of the curvature of P. 

INTRODUCTION 

Let 7r: P--, M be a C ~ principal bundle with group G, having Lie 
algebra g. Suppose M has a metric tensor h M, and let w be a ~-valued 
connection 1-form (or gauge potential) on P. If k is some ff b-invariant inner 
product on ~, then we define a metric tensor h on P by h(X ,Y)=  
hM(rr.X, ~r.Y)+ k(w(X), w(Y)), where X, Y~ TpP ---- tangent space of P at 
p E P. For a full introduction to the above concepts, the reader may consult 
Bleecker (1981), Kabayashi and Nomizu (1963), Trautman (1980), etc. The 
physical significance of the geometry of (P, h) is well established in the case 
where (M, hM) is a space-time and G =  U(1). Indeed, (P, h) is then the 
five-dimensional space in the classical Kaluza-Klein unified field theory 
(Klein, 1926). There are two significant facts. The Einstein field equations 
and Maxwell's equations result by equating to zero the first variation (with 
respect to h M and co) of the total scalar curvature of (P, h). Also, the 
geodesics of (P, h) project (via ~r) onto the space-time paths of charged 
particles on M where the charge is essentially the vertical component of the 
tangent vector of the geodesic on P. Both of these facts have appropriate 
generalizations to the case of an arbitrary compact group G, except that 
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Maxwell's equations are replaced by the more general Yang-Mills equa- 
tions, and charge must be understood in a generalized sense (e.g., isospin, 
hypercharge, color charge, weak charge, etc., depending on G); see Bleecker 
(1981), Cho (1975), Trautman (1980), etc. 

In this paper, we concentrate on the relevance of the spectrum of the 
Laplace operator A of (P,  h) on COO(P,C)= C-valued C ~ functions on P. 
To avoid the difficulties that arise when h is not positive definite (e.g., 
nonellipticity of A) and when P is noncompact, we will assume henceforth 
that (M, h M) is a compact connected Riemannian manifold as in Euclidean 
field theory, and that G is compact with k on ~ positive definite. In order 
that the spectrum of A be nonnegative, we define [for u~Coo(P,C) and 
p E P] (Au)(p)  as minus the sum of the second derivatives at p of u along a 
frame of geodesics (i.e., with orthonormal tangent vectors) passing through 
p. For a given unitary representation r: G ~ U(W~) there is also a Laplace 
operator A on the space C(P, IV,) =-- {f: P --. W,[f(pg) = r(g-J)f(p)  for all 
p E P; and f i s  C ~ } of particle fields associated to r. In Section 3, we define 
A r in terms of covariant differentiation (relative to w) and its dual codif- 
ferential. The (Euclidean) mass 2 spectrum for particles arising from r is 
Spec(A,) _---- { m ~ • [ A r /=  mf for some 0 4: f ~  C( P, IV,) }. In Section 4, we 
prove that Spec(Ar) for any r can be completely determined from Spec(A) 
------ {A~ R [Au = Au for some 0 v ~ uE  COO(P,C)} and a knowledge of how the 
eigenspaces of A decompose into irreducible subspaces under the isometric 
action of G on (P,  h). 

In Section 4, we prove that if 0 E Spec(Ar) for a nontrivial r, then the 
holonomy group G O of w is not equal to G. Assuming also that G is 
connected and letting G~ be the closure of G 0, then we prove that for each 
of the infinitely many eigenvalues of the Laplace operator for G/G6 there 
corresponds a different irreducible unitary representation s of G such that 
0 ~ Spec(As). 

In Section 5, we find that if the curvature (i.e., field strength) ~2 of w 
satisfies a certain nondegeneracy requirement, then there is a positive lower 
bound on the elements of Spec(A,) in terms of ~, h M, and r. Interestingly, 
the lower bound is both simpler and larger when the Yang-Mills equation is 
satisfied. 

The relationship between Spec(A,) and the eigenvalues and eigenspaces 
of A, which we establish in Section 3, depends on a complete understand- 
ing of the Peter-Weyl theorem. It is not enough to know that the matrix 
entries of irreducible representations of G form a dense set in L2(G, C). We 
need to exhibit a G X G-equivariant unitary equivalence between L2(G,C) 
(with G • G acting via pull-back by left and right multiplication) and the 
Hilbert space direct sum of the representations of G • G obtained by 
applying the " H o m "  functor to the irreducible representations of G. There 
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are books which do this (e.g., Adams, 1969; Wallach, 1973); however, a 
streamlined account of precisely what is needed seems preferable, because 
we need to establish much notation, which forms a major part of the 
Peter-Weyl theorem anyway. Also, we need to extend the Peter-Weyl 
theorem to compact homogeneous spaces, in order to fully understand the 
relationship between the holonomy group and representations that admit 
particles of zero mass. At any rate, Sections 1 and 2 provide a concise 
treatment of harmonic analysis on compact homogeneous spaces for those 
who need one, and an index of notation for those who do not. 

In Section 6, there are a number of comments, problems, and physical 
speculations which are perhaps more interesting than correct or verifiable. 
In particular, we offer an explanation for why there seems to be a positive 
lower bound on the set of masses of all electrically charged particles. Also, 
we suggest how nature prefers to exhibit more particles arising from one 
representation of the gauge group than another representation. Implicit in 
these explanations is that certain properties of particles, such as their masses 
and relative tendencies to exist, can never be explained through local 
invariants or purely algebraic manipulations, but depend on the global 
geometry of the space-time-charge continuum. The same situation exists in 
differential geometry; the eigenvalues and eigenspaces of the Laplace opera- 
tor are never determined by the metric on a small piece of the manifold, but 
are influenced by every piece. The properties of the smallest constituents of 
the universe may depend critically on the universe at large. 

1. ALGEBRAIC PRELIMINARIES 

We recall some basic facts about unitary representations, while estab- 
lishing notation. 

Let G be a group and let r: G--. U(Wr) be a unitary representation, 
where W r is a finite-dimensional complex vector space with Hermitian inner 
product <,>r and U(Wr)----(A~Hom(Wr, Wr)I(Au, Ao)r= (u,v)~Vu, v ~  
W~} where Hom(W r, W~) is the space of all linear A: W r --, W~. Given another 
such representation s: G--,U(Ws), we say that a linear A: Wr--,W s is 
G-equivariant if A o r(g) = s(g) o A ,VgE G. If there is such an A which is an 
isomorphism, we write r - s ;  and if (Au, Av)s = (u, V)r for all u, v ~  W~, A 
is called a unitary equivalence. We say r is irreducible if there are no 
invariant subspaces V C W~ [i.e., r(g)(V) C V for all g E  G] other than V =  0 
and V = W~. 

Lemma 1.1 (Schur). If r and s are irreducible and A: Wr--" I'V s is 
G-equivariant, then either A = 0 or aA is a unitary equivalence for 
some a > 0. 



560 Bleecker 

Proof. Let B: W r --, W r be the unique linear map  such that  (Av ,  Aw)., = 
(Bv,  w)rVv, wE W r. A simple computa t ion  shows that  B is G-equivariant ,  
and hence the eigenspaces of  B are invariant.  Since r is irreducible, there is 
only one eigenspace W r, and B = zI  for some z E C. Actually,  z E [R and 
z I> 0, because (Av ,  Av)s = z (v ,  V)r. Since A is G-equivariant  A(Wr) is 
invariant,  whence s irreducible yields A = 0 or  A onto with ~ A  a uni tary  
equivalence. �9 

If  r~ . . . . .  r,, are uni tary representat ions of  G, then we can form the 
or thogonal  direct sum Wq~ �9 �9 �9 @ Wr~ with Hermi t ian  inner p roduc t  induced 
by the ( , ) r ,  and obtain a uni tary representat ion q @ . . .  @r,,: G ~ U ( W q  
e . . . e w ,  o). 

Lemma 1.2. Let s, rl . . . . .  I',, be uni tary  representat ions of  G with r, 
irreducible and r~ ,~ w for i 4 = j ,  1 ~< i, j <~ n. Suppose  F: Wq 

- - -  ~ W r ~  W~ is G-equivariant ,  onto,  and nonzero on each sum- 
mand.  Then there are posit ive constants  al . . . . .  a,,, such that  F is a 
unitary equivalence if ( , ) r ,  is replaced by ai( ,  )r,. 

Proof Since the kernel of  F: W~,--+ F(W~,) is invar iant  and not  W~, we 
have that  F: Wr, ~ F(Wr, ) is a G-equivariant  i somorph ism and by  Schur 's  
l e m m a  there is a constant  a i > 0  such that  t~iF: Wr, ~ F(W~,) is unitary,  
whence F: W~, ~ F(Wr,) is uni tary  if ( , ) r ,  is replaced by  a, ( , ) r , ,  ai ~ at -2" It  
remains  to prove that  F ( W  r ) • F ( W  r ) for i 4= j .  Let Pi: W~ --, F(Wr, ) be the 
(necessarily G-equivariant)  or thogon~l  project ion onto F(Wr, ), and note  that  
the restriction of P~ to F(Wr,) is zero by Schur 's  lemma,  since r, ,~ 5" Thus,  
F(Wr , ) •  �9 

For  uni tary representat ions r and s, let Hom(Wr,  Ws) ( - -  the set of  all 
l inear maps  f rom W r to W~) have the Hermi t ian  inner p roduc t  r(A,  B)~ = 
t r (B*A)=Y. , (B*A(e i ) , e i ) r=~, i (A(e i ) ,  B(e,))~, where {e i l i= l  . . . . .  dr) is 
any f rame for W r and B * E  Hom(W~, Wr) is the adjoint  of B E  H o m ( W  r, W~.) 
(i.e., ( Bv, w )~ = ( v, B*w )~Vv @ Wr, WE W~ ). For  w E  W r and v ~  W~, let v |  
E H o m ( W  r, W~) be given by ( v |  = (v' ,  w) rv ,Vv '~  W r. A simple com- 
puta t ion  shows r (v |174  = (v ,v ' )~(w' ,w)r .  There  is a representa-  
t ion r X s: G • G --, U(Hom(Wr,  W~)), given by ( r  X s)(gl ,  g2)(A) = 
s (g2)oA or (g i - I ) ;  a simple calculat ion shows r X s to be unitary.  

Lemma 1.3. Let r, s, r ' ,  s '  be irreducible uni tary representa t ions  of 
G. Then r X s and r ' X  s '  are irreducible with r X s ~ r ' X  s '  only if 
r ~ r '  and s ~ s ' .  

Proof. Let F: H o m ( W  r, W.,.) ~ Hom(Wr,  , Ws,) be any G X G-equivariant  
map.  If  r ,~ r '  or s ,~ s ' ,  we will show F - -  0, whence r X s ~ r '  X s ' .  I f  r = r '  
and s = s ' ,  then we show that  F - -  aI for some a ~ Z, and so there can be no 
or thogonal  project ions onto invar iant  subspaces  other  than 0 or 
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Hom(Wr, W~) (i.e., r • s is irreducible). Now for wE W r and w 'E  Wr, (respec- 
tively, vEW~,v 'EI ,  V~,) we have a unique linear map K(w',w): Ws--,W ,, 
(respectively, L(v,v'): Wr,--' Wr) such that (K(w' ,w)v,V')s ,=, , (F(v|  
w), V'| = ( L ( v ,  v')(w'), w)~ for all vE  W~, v'E W,, (respectively, for all 
wE W~, w'E Wr, ). Using the G • G-equivariance of F, we have that K( w', w) 
and L(v, v') are G-equivariant. Thus, K(w', w) = 0 if s ~ s '  and L(v, v') = 0 
if r ~r r ' ;  and in either case F =  0. If r = r '  and s = s',  we have that K(w', w) 
and L(v, v') are scalar multiples of the identity, whence 

s( F( v| ), v' | = a( v, v'),( w, w')r 

=s(a(v|174 ' r  r and v , v ' E W  s 

Since (o| ws, wE w,} spans H o m ( W ,  Ws), we have F =  aI. �9 

2. H A R M O N I C  ANALYSIS ON C O M P A C T  
H O M O G E N E O U S  SPACES 

We define the Laplace operator and related notions on a compact  Lie 
group. Using the results of Section 1, we then establish a complete, 
equivariant version of the Peter-Weyl  theorem and its extension to compact 
homogeneous spaces. 

Let e be the identity of the compact,  Lie groups G and identify 
the Lie algebra ~ with TeG--tangent space of G at e, The ~b-invariant  
inner product k on ~ determines a bi-invariant Riemannian metric k a 
on G; for X, Y E  TgG, we set ka(X,  Y) -- k(Lg- , .X,  Lg ,.Y) = 
k(~bgLg-, .X,  ~bgLg-,.Y) = k(Rg-, .X,  Rg ,.Y) where Lg (and Rg): G --, G 
are left (and right) translation by g. Let X I . . . . .  XeL be an o.n. basis of TeG 
and let X I . . . . .  X m be the Lg-invariant extensions (Xig -- Lg. X~). Since g ~  g- 
exp(tXj) is a one-parameter group of isometries generated by X~, we have 
that X i is a Killing vector field. Since ~ has constant length as well, we 
know (Kabayashi_and Nomizu, 1963, p. 252) that the integral curves 
t~g.exp(tXi) of X i are geodesics. Letting D, denote differentiation with 
respect to t, the Laplace operator for (G, kc )  is given (at t = 0 )  by 
- Ac(_f)(g ) = EiD, Z[f(gexptX~)] = Y~iX/2[ f ] (i.e., A C = -- EiX,?) where we 
view X i as a differential operator on C~176 the space of C ~ complex- 
valued functions on G. 

There is a Hermitian inner product on C~176 given by ( u , v ) c , =  
fcu6l~c where Pc is the volume element of (G, kc),  and note that L2(G;C) 
is the completion of C~(G; C) to a Hilbert space. Since the maps  Lg and  Rg 
are isometries, we have unitary representations L, R: G --. U(L2(G; C)) given 
by L ( g ) f = f o L a - ,  and R ( g ) f = f o R g .  Since [R(g) ,  L ( g ) ] = 0 ,  we have a 
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unitary representation L X R: G X G ~ U(LZ(G;C)) given by (L  X 
R)(gj, g2) = L(gl)oR(g2). We will show that there is a one-to-one corre- 
spondence between the L X R irreducible subspaces of LZ(G;C) and the 
representations r X r of Section 1 as r ranges over a complete set of mutually 
inequivalent unitary representations of G. This is part of the Peter-Weyl 
theorem. 

Let /~ be an eigenvalue of A a and Va(t~ ) the eigenspace. From the 
general theory of the Laplace operator on arbitrary compact Riemannian 
manifolds (see Warner, 1971), we know that dim[Va(/~)] < c e  and the set of 
eigenvalues is a discrete set of nonnegative real numbers. Moreover, 
L2(G;C)=~,Va(I~), as an orthogonal Hilbert space direct sum. Since Rg 
and Lg are isometries (e.g., sending geodesics to geodesics), we have 
[L(g) ,  Aa] = [R(g),  Aa] = 0, whence Va(tx ) is a L • R-invariant subspace 
of L2(G; C). 

To identify the irreducible subspaces of Va(/~), we introduce Casimir 
operators. Given a unitary representation r: G-~U(Wr), let r': ~ 
Hom(W r, Wr) be the representation of ~ given by r'(A)(v) = Drr(exptA)(v ) 
at t = 0 .  The Casimir operator C/  Wr ~ W~ is given by C r = 
-Y.f'(Xg) o r'(Xi), which is independent of the choice of o.n. basis X I . . . . .  X,, 
of c3. Since r is unitary, r'(A) is skew-adjoint relative to ( , ) r ,  and then we 
know that C r is a nonnegative self-adjoint operator because (Cr(v), w)r = 
Y,,(r'( Xi)( v), r'( X,)(w))~. Since 

r (g)Crr(g) - '= -E , r (g )o  r ' ( X , ) o r ( g ) - '  or(g)or ' (X i )or (g) - '  

= -E,r ' (  ~b gX,)or'(~b gX,)=C r 

we see that C r is G-equivariant and hence W r decomposes into an orthogonal 
direct sum of invariant eigenspaces of C r. Also note that r '(A)or '(A)= 
D,2r(exptA) at t = 0, whence we could also define CAr ) as the Laplacian at 
e of the vector-valued function g~r(g)(v)  on G. 

Let G be a complete set of mutually inequivalent irreducible unitary 
representations of G. For r E  G, we have from the above that C r = crI for 
some constant Cry>0; indeed, c r > 0  if r'=/=0. For any r E G ,  we define a 
linear map ~r: H~176176 C) by [~r(A)](g)=tr[r(g)oA]= 
r(A, r ( g -  l ))r for A ~ Hom( W r, W r) and g E G. Recall that Hom( Wr, W r) and 
C~~ are both G• representation spaces. A simple computation 
shows q% to be G X G-equivariant. Note that 

A a[ xt%(A )] (g )  = - Y~D, 2 t r [ r (  gexp tX i)A] 

= tr[r(g)C~A] = Crtr[r(g)A] = c~xt%(A)(g) 
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and so Ifr(HOm(W,,W~))CVG(c,). Let d ( g ) = { r E d l C r = # } .  Since the 
representations r •  r for rE  G(p.) are mutually inequivalent irreducible 
representations by Lemma 1.3, it follows from Lemma 1.2 that the sub- 
spaces ifAHom(Wr, 14",)) for rE  d ( g )  are mutually orthogonal, whence d ( g )  
is finite, since dim V(/z)< oo. Let if, = I~reG( ix ) ' t t r  r.  

Theorem 2.1. The G • G equivariant map if,: @,ed~,)Hom(W,, IV,) 
V(/*) is an isomorphism and replacing , ( , ) ,  by , ( , ) ; - -  

V( G)d7 i ( , ),[ d r -- dim(IV,), V( G) -- fal~a], "t', becomes a unitary 
equivalence. 

Proof. To prove if, is an isomorphism, we need only prove if, is onto 
because of Lemma 1.2. Let V be an arbitrary irreducible subspace of Va(t*) 
relative to the representation R: G--,U(Va(I~)) defined earlier [ R ( g ) f =  
fo  Rs]. Since Va(/~ ) is the direct sum of such subspaces, it suffices to prove 
image (if,)DV. There is some red  such that R: G - , U ( V )  is unitarily 
equivalent to r via some E: V--, IV,. Let u be the unique function in V such 
that (v, u ) a =  v(e) for all v E  V; indeed, u=giu i (e )u i  for any o.n. basis 
(ui} of V. For any f E  V, we have 

ifr( E( f ) |  u ) ) (g )  = tr( r ( g ) o  [ e (  f ) |  u )] ) 

= tr( [r( g ) ( E (  f ))] |  

= (r( g)( E( f )). E (u ) ) ,  

= ( E ( f o R g ) ,  E ( u ) ) ,  = ( f o R g ,  u)a 

= ( f o R g ) ( e )  = f ( g )  

This proves f E image if, and er = ~' whence V C image if.. In view of 
Lemma 1.2, we need only replace , ( , ) r  by at,( , ) ,  to make if, a unitary 
equivalence. To find a,, let e t . . . . .  ed, be an o.n. basis of IV,. Then for any 
wE IV,, we have 

drar I wl2~ = Y~ia,(ei, ei),(w, W)r 

= ~,,ar, le,| 2 = Y, illifr(e,| 2 0 

whence 

ar---- v ( a ) a ; '  �9 
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Since '/'~ is an isomorphism, we should be able to recover A E 
Hom(W~, Wr) from '~r(A)~ Vc(c,). 

Proposition 2.2. For any A ~  Hom(W,  Wr), we have 

A = 

Proof. 

'~( A )( g') = tr[ r( g') A ] =,( A, r( g')*)r 

t , = ) ) ) c  

= drV(G)-'fG't'~(A)(g ) tr[r(g)r(g')*] I~c(g) 

= d y (  G ) - '  fc~t'~ ( A )( g ) t r [  r( g')r( g- '  ) ]~c(  g ) 

= tr[r (g ' )d ,V(G)- ' f* , (A  )(g)r(g-t)lzc(g)] 

= ff' ,(d,V(G)-'fG'Pr(A)(g)r(g-')/%(g))(g') 

Let H be a closed (necessarily Lie) subgroup of G. Then G/H -- {gH[ g 
G} has a unique Coo structure such that Q: G ~ G/H is a Coo principal 

bundle with group H acting on G to the right by isometries of (G, kc). 
Let kG/H be the metric tensor on G/H induced by k c via Q 
[i.e., kG/h,(Q,X, Q , Y ) =  kc(X , Y)], and let Ac/n be the Laplace operator 
for kc/n. One can prove that the horizontal rifts to G of geodesics on G/H 
are geodesics on G and the fibers (cosets of H )  are totally geodesic. 
Consequently, (Aa/HU) o Q = AG(U o Q) for any u E C~176 C). The map 
Q: G-~ G/H is G-equivariant relative to left multiplication by G on G and 
G/H. We note that Q*: COO(G/H;C)-~ C~176 is a G-equivariant iso- 
morphism onto the space Coo(G, H; C) = ( f ~  C~ fo L h = f for all 
h~H},  where Q*(f)=-foQ. Since Q*oAc/n=AGoQ* , for each eigen- 
value/~ of At//1 with eigenspace VC/H(#) , we have Q*(Vc/rl(#)) = Vc(#)A 
C~176 H; C). If i t c / ,  is the volume element of kG/u, then we have the 
inner product on COO(G/H; C) given by (u, V)C/H =-- fG/HUgI~G/". Note that 
( u, V )C / H = V( H )- '( Q'u, Q*v )c. 

For rE(~ ,  we define H r = ( w ~ W ,  lr(h)(w)=w, V h ~ H } .  Let 
Horn(W,, Hr) be the G • {e}-invariant subspace of all A E Hom(W,, IV,) 
such that A(W~)CH~, or equivalently, r(h)oA=A for all hEH. For 
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A ~ Hom(W. H r), we have 

Cr(A)( gh ) = tr[r(gh )A] = tr[r( g)r( h )A] = ~rr( m )(g)  

whence 't'#(A ) ~ V~(c~) NC~(G, H; C). Conversely, if T~(A) ~ C~(G, H; C), 
then using Proposition 2.2, we obtain 

r(h) o A = dry ( G )-  l fG'~ttr( z] )( g)r(  hg- I)FG(g) 

= d y ( G ) - t f q l ~ ( A ) ( g ' h ) r ( g ' - ' ) # ~ ( g ' ) = A  for all h ~ H  
G 

whence AE Hom(W, H#). Since the spaces 't'<(Hom(W r, W~)) are G• 
invariant (indeed, G • G-invariant), we have 

Q*( Va/H(~t ) ) = VG(Iz )fqC~~ G, H;C)  

-= +r~ do,)[ ~r(Hom(Wr, Wr) ) NC~ H; C)] 

= + rE 60,)qrr (Horn(W,-, H~)) 

Theorem 2.3. Giving Hom(W. Hr) the inner product / , ) r n ~  
V(G/H)dr  ~ / , ) r  we have a unitary equivalence of G-representa- 
tions [G acts as G • (e} on Hom(W~, Hr) ] 

Q , - I  o ~.]t : +r~(~)Hom(Wr+ nr ) + VG/H(Ij, ) 

Proof. We have seen that Q*: Vc/~,(l~)--+ V~(p.)NC~176 H;C) and if'p: 
@rEdo,>Hom(W, Wr)~V~(F)AC~176 are both G-equivariant iso- 
morphisms, and we know from before that ,t,~ preserves the orthogonality of 
the summands. Hence we only need unitarity on each summand. We have 

)[[a/. V(H) II '~r(A)IIa=V(H)-'V(G)d2'~IAI~ I I ( e - ' * o * r ) ( A  = - '  

= V ( G / H ) d ; '  =AAIr �9 

Remark. We can form the Hilbert space direct sum of the spaces 
Hom(W~,Hr) using the inner products r( ,)  y. Then Theorem 2.3 im- 
mediately yields a unitary equivalence o/: @ re dHom( W r, H r) -~ L2(G/H; C ) 
of representations of G; indeed, representations of G • G when H =  {e}. 
This is the Peter-Weyl theorem, but some readers may not recognize it as 
such. Let ej .... .  ea, be an o.n. basis of Wr such that e I .... .  ehr span Hr 
(h r ~< dr). Define rq E C~ C) by r(g)(ej)  = ~r,j(g)e,. Now 
drV(G/H)-Iei|  for l<<-i<~hr and l<~j<~d r form an o.n. basis of 
Hom(W, Hr) and qf~(ei| = tr[r(g)ei| = (r(g)e i, ej) r = w 
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C~176 H;C).  Thus, (dy(G/H)-~Q*-~rji[rEt~, l < i < h ~ ,  l<j<~dr} is an 
o.n. basis of L2(G/H). Since any fECOO(G/H) can be uniformly ap- 
proximated by finite linear combinations of eigenfunctions of Ac/n (see 
Warner, 1971), f can be uniformly approximated by finite linear combina- 
tions of the w 

3. HARMONIC ANALYSIS ON PRINCIPAL BUNDLES 

Building upon the notation of the introduction, for A E 9, let A* be the 
vector field on P given byAp = Dt(pexptA) at t = 0. Let Fp: G ~ pG =-- (pg[ 
g E  G} be defined by Fp(g)_= pg. For A, B E  ~ with left-invariant extensions 
A, B, note that h(Fp.gA, Fp.gB) = h(DtFp(gex p tA), D, Fp(gexp tB)) = 
h( A~g, Bp*~) = k(o~( Apg),2( Bpg)) = k( A, B) = kc( A ~, Bg), so that Fp is an 
isometry and A*=  Fp.(A). Moreover, for an o.n. basis X I ..... X,, of 9, 
A v -  - ( X ~  '2 + . . .  + X*2): C(P ,C)  ~ COO(P,C) is an operator such that 
(AVu)(p) is the Laplacian of u[ pG at p regarded as a function on pG with 
the metric h[pG. The vector field A* generates the one-parameter group 
p ~ p e x p  tA of isometries of (P,  h), whence A* is a Killing vector field. Since 
A* has constant length, we know (Kabayashi and Nomizu, 1963) that the 
integral curves t ~ p e x p t X  i of A* are geodesics in (P,  h) as well as pG [i.e., 
pG is a totally geodesic submanifold of (P,  h)]. 

Recall that A is the Laplacian of (P,  h). Regarding A* as a differential 
operator, we have [h, A * ] = 0  since A* is Killing; so [A v, A ] = 0 .  Let 
0 = ?~0 < hi < hz < ~3" " " be the eigenvalues of A with corresponding eigen- 
spaces V(~.i) i = 0 , 1 , 2  . . . . .  Since [A, AV]=0, we have AV(v(~i))CV(~i). 
Moreover, since A* is Killing and hence divergence free, it is a skew-adjoint 
linear operator on COO(P,C) with the inner product (u,v)=feuSp, h [i.e., 
(A*[u],v)=-(u,A*[v])]. Thus, A v - ( X ~ ' 2 +  �9 + ,2 = . .  X * )  is symmetric 
and nonnegative, and V(h,.) decomposes into a direct sum of orthogonal 
subspaces 

v(x,) = 

where VV(i.t)={uECoo(P,C)[AVu=ttu}, and all but finitely many sum- 
mands are 0. Note that since u E vV(/~) implies u[pG is an eigenfunction on 
( pG, h ] pG) ~ (G, k c) with eigenvalue/~, we have that V v(/~) = 0, unless/z 
is an eigenvalue of Ac; we may assume the above sum is over such/z. 

For any representation r: G~GL(Vr) we set C(P, Vr)= ( f :  P-- '  Vr[ 
f (pg)  = r(g- t)[f( p)]VgE G; f is C~176 Note that C(P,  Vr) can be identified 
with the space of sections of the associated vector bundle P X cV~ ~ M. If r 
is unitary, then we have an inner product on C(P, Vr) given by ( f l ,  f2)r = 
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V(G)-�91 I , f2)A~h. Let Hom(/z) (with inner product (,)~,) be the orthogo- 
nal sum @r~d(,)Hom(W~, W~) and let r~: G • G ~ U(Hom(/~)) be the direct 
sum of the representations r X r, rE  G(#), where Hom(W. Wr) has the inner 
product r(, ): making ff'~: Hom(/~)--, Vc(/~ ) a unitary equivalence. Relative 
to the unitary representation G--, {e} X G ~  U(Hom(W. W~)), we have the 
space C(P, Hom(W. WDn) consisting of all f: P --. Hom(W. W~) such that 
f ( p g ) = r ( g - t ) o f ( p ) .  We have a unitary representation R.: G - .  
U(C(P, Hom(W r, Wr)R) ) given by [Rr(g)f](p) = f(p)or(g-�91 These piece 
together to give a unitary representation R~,: G--, U(C(P, Hom(Iz)R)). We 
also have a unitary representation R: G--. U(L2(P,C)) given by R(g) f= 
fo Rg = R~f. Since [A v, R~] = 0, vV(~t)is an invariant subspace. 

Lemma 3.1. The linear map ~ :  C(P, Hom(/z) R) --, vV(t~) given by 
~( f ) (p )=~ ' , ( f (p ) ) (e )  is a unitary equivalence of R~, with R: 
G --) u(vV(l~)). 

Proof. We prove ~ ( f ) E v V ( # )  by showing that ~ ( f )  restricted to 
an arbitrary fiber pG is an eigenfunction of A G when it is pulled back by 
Fp: G ~ pG. Indeed, [ ~ ( f )  o Fp](g) = ~ ( f ) ( p g )  = "l'~(f(pg))(e) = 
"t'~(r~(e, g- ' ) f (p))(e)= ~ ( f ( p ) ) ( g - ' ) =  [q, ( f (p ) )o  Invl(g) where Inv: 
G ~ G is the isometry g ~ g - I  of (G, k~). Since ~'~(f(p))~ V~(tt), we then 
have ~ ( f ) o  F ~  VG(t~), and so ~ ( f ) ~  VV(#). Moreover, 

SpGI 6"S~( f ) I 2~pG = SGl~ f )o Fpl2~G = S I q',( i( p ))o Invl2#~c 

clf l~PC 

whence 

f p l ~ ( f ) l  2t~h : V(G)- '  fpl f l ~ , ,  : ( f ,  f)~ 

Thus, ~ is an isometry onto its image. It is straightforward to check that the 
inverse of ~ is given by ~-i(  u)( p ) =  q'~-I(u o Fp o Inv). The equivariance of 

follows from a simple calculation, using the G • G equivariance of q'~. �9 
Using Proposition 2.2 and writing ~ I (u )=~red (~ ) f  r where uE 

Vz(tL) and f~ E C(P, Hom(W, W~)n), we have f~(p) = drV(G) -I 
fcu( pg- I)r(g- I )/~G(g) = dy (G) -  lfcu (pg)r(g)~a(g), since Inv is an isom- 
etry of (G, kc). Also, observe that ~ =  ~ , ~ :  ~r~dC(P, Hom(Wr, W~) n) --, 
L2(p, C) is a unitary equivalence. Nearly all particle fields of interest can be 
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faithfully encoded into the space C~176 Indeed, choosing any basis 
e I . . . . .  ea, of W r, we have a decomposition of Hom(Wr, Wr) into ( e ) •  
invariant subspaces Wr( i) = ( w| ei[ w E Wr). Thus, C(P,  Hom(W r, W r)n) ~- 
e~C(P, Wr(i )) ~- d~C(P, Wr); and so any particle field in C(P, ~) ,  where V s 
contains at most d r copies of W r, can be represented by a function in 
C~ via ~. Of course, taking G = G i X S p i n ( n  ), where G I is the 
internal symmetry group, we can represent spinor fields within C~176 
too! We can obtain a basis-free decomposition of (Dr~ ~C(P, Hom(W r, Wr) R ) 
into finite-dimensional invariant subspaces by pulling back via ~ the decom- 
position L 2 ( p , c ) = ~ i V ( X , )  and taking intersections. Setting C(r, 2~i)= 
:6~-I(V(?~,))DC(P, Hom(W~, Wr)R)  , w e  will find ~ C ( P ,  Hom(W r, Wr)n) 
= ~ , , r C ( r ,  ~ki) and L2(P,C) = @~,r~(C(r, ~.~)). It is not difficult to show 
that every irreducible subrepresentation of R r: G ~ U(C(r, X,)) is equivalent 
to r. We will show that C(r, Xg) is closely related to the space of all particle 
fields, coming from the representation r, which have mass z ? ~ -  c r >i O. 

Every XE T_ P has a unique decomposition into horizontal and vertical 
vectors X =  xH~  - X v, x H E  Hp ~ ( X E  TpPIw(X ) = 0) and x v E  Vp =-- ( X E  
TDP]rr,(X ) ----- 0}. For any q-form q9 on P, we define 9911 by 99H(x I . . . . .  Xq) = 
99"(X H . . . . .  XqH). When q = l ,  we have 99__9911+ 99v where 99v(x)=99(XV). 
For a unitary representation s: G ~ U(Vs), we have the space Aq(P, Vs) of all 
V.:valued q-forms on P. There is a natural inner product on Aq(P, V~) given 
by h(99, 99')~ ---- V(G)-~feJ,(99, 99')Azh, where ~,(99, 99')~(p) is the inner product 
of the V:valued forms on the vector space TpP with metric h; see Bleecker 
(1981) for further details on this and what follows. We write h II 99 II ~ = h(99, 99).,. 
(omitting h and s, if clear) and/, [99]~ = h(99, 99)s. For 99 E At(P, V~), we have 
19912_h1991ff = , ,1# ,  = v [99 I ; . I f  Aq(P,V~),we [s + J, 99 E define D99 ~ A q+ i( p, Vs) 
by D99 = (d99)11. 

There is also the space Sq(p ' -  Vs ) = (99~ Aq(p ' Vs)199 = 99tt and R~99 = 
s(g-I)99). One can check that Aq(P, Vs) is isomorphic to the space of all 
q-forms on M with values in the associated bundle P X cV ~--, M. Also 
D(Aq(P, Vs) ) C ~q+l(p, Vs ) and D corresponds to covariant differentiation 
of such forms. For clarity, we often write D a s D  s. 

There is an operator 8~: -Aq+I(p, vs)--*Aq(P, Vs) dual to D~ in the 
sense h(D~%~,b)~ =h(%Ss+)~ for all 99EAq(P,~)  and ~Aq+I(__P,V~). We 
have an equivalent definition of 8~, as follows. Let *: Aq(P, Vs) ~ An-q(P, ~.) 
( n - - d i m M )  be defined by taking ~(99) to be the unique element of 
-A"-q(P, Vs) such that (~99)[Hp =*p(99[Hp) where *p is the Hodge star for 
forms on Hp with the metric and volume element_ induced by h and ~r*(~M). 
The self-adjoint operator A ---- 8sD ~ + DsS~: Aq(p, Vs) ~ Aq(p, Is) is the 
(Hodge) Laplacian. In the case q--0 ,  we have ~0(p, V~)=C(P, V~.) and 
A = 8sDs, since 8~ = 0 on A~ V~). In Euclidean field theory, C(P, V~.) is 
the space of particle fields associated with s, and the eigenvalues of A :  
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C(P, V,)-~ C(P, V~) constitute the mass 2 spectrum Spec(A,) for such par- 
ticle fields. 

For any uE C~176 we define Atlu~ C~ by taking (Anu)(p) 
to be minus the sum of the second derivatives of f along a set of geodesics 
passing through p such that the tangent vectors at p form an o.n. basis of 
Hp. Since Hp _1_ Vp and pG is totally geodesic, it follows that the Laplace 
operator A of (P, h) is An+ A v, where A v was introduced earlier. The 
operators A n, A v, and A extend to vector-valued functions on P. They each 
leave C(P,V~) invariant and commute with ~ .  In particular, we have 

I(V(~.,)) = ~rC(r, hi), and C(P, Hom(W r, D~.) n) = ~iC(r, ~'i). 

Lemma 3.2. For any unitary representation s: G--* U(Vs), the op- 
erators A s and A n on C(P, V,) are equal. 

Proof. Recall (Warner, 1971) that A = d8 where 6 is the codifferential 
adjoint to d. For arbitrary ~, q~EC(P, V,), it suffices to prove (Aq~, cp), = 
(AII~b, q0),, but (AH~b, cp), = (Aq, - Ave, q~)~ = (8dq,, q~)s --(AV~ b, cp), =h 
(d~b, dep), --h(d~b v, d~V), = h(dt~ t', d~p'~'), = h(D~+, D~p) s = (SsD~+, 9~)~ = 
(6A~,~),. �9 

Recall that C(r, X,) = ~-I(V(X,))NC(P, Hom(Wr, Wr)R), and Spec(Ar) 
= (/~ E R]Ar f  = /~f  for some f ~  C(P, W r), f 4: 0}. We define C( P, Wr; m) to 
be the eigenspace of A r with eigenvalue m. 

Theorem 3.3. For an irreducible unitary representation r: G--. 
U(W D, with Casimir operator CrI, we have Spec(AD= {Xg--Cr] 
C(r, X~) 4: 0}. Indeed, the (basis-dependent) G-equivariant isomor- 
phism C(P, Hom(Wr, Wr)R)~drC(P, Wr) carries C(r,X,)  onto 
drC( P, W~; X~ - cr), the direct sum of d r copies of C( P, Wr; X~ - Or). 

Proof. One can check that A, A n, and A v commute with the maps oy: 
C(P, Hom(W r, Wr) R) ~ VV(cr), and C(P, Hom(W, Wr) R) ~ drC(P, Wr). For 
uE VV(cr) AV(X,), we have Au = X,u, AVu = CrU, and Anu = (Xi -- cr)u. Thus, 
the same holds for the corresponding f =  YTfj| ~ C(r, Xg) and its "com- 
ponents" fj, l<-j<.dr. In particular, A J j = A n f j = ( X ~ - - c D f j  [i.e., f i e  
C(P, Wr; X , -  Cr) ]. Conversely, if ~ E  C(P, Wr; h i - cr), then f =  Ejfj| 
satisfies A " f = ( X i - c r )  f. We already know A V f = c J  for f E  
C(P, Hom(Wr, Wr)R), s i n c e ~ ( f ) E  v V (Cr), and so A f =  X i f a n d f ~  C(r, hi), 
as required. �9 

Corollary3.4. F o r f E  C( P, Wr; X, - cr), we have A f =  Xif  , AVf = c J ,  
and A J = A n f = ( X , - - c ~ ) f .  Moreover, [idfll2=X, llfl] 2, ][dfVi[ 2 
= cr l[ f 1[ 2, and ]l Drf l[ 2 = i[(df)n [I 2 - (h i _ Cr)] [ f [[ 2. In particular, 
X,--Cr>~O. 
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Proof The first statement follows from the proof of Theorem 3.3. Note 
that j, II D~f II ~ -= h( OJ,  Drf)r = (SrDrf, f )r  = ( Arf, f )r = (~i -- C~)ll f II ~, and 
the others follow similarly. �9 

Recall that the field strength (or curvature) of the gauge potential (or 
connection) w is s  ~) where the representation is ~b :  G ~  
GL(~,). 

Lemma 3.5. For any representation r: G ~ GL(V) a n d f E  C( P, V), 
we have Df=df+(r 'o~o)fE--&l(P,V) [i.e., Dfp(X)=dfp(X)+ 
r'(~o(X))(f(p)) for p E P ,  XETpP; and r ' :  ~ Hom(V,V)  is the 
corresponding Lie algebra representation]. Moreover, D ( D f ) =  
(r 'os  

Proof We have D r = d r - d r  v, but df V( A~ ) = df( A~ ) = D, f(  pexp tA ) 
= D , r ( e x p ( -  tA) ) ( f (p ) )  = - r ' (A)( f (p))  = - r'(co(A*))(f(p)), and it fol- 
lows that Dr= df +(r'oco)f. Also, d( Df)  = d2f +(r'odo~)f +(r'o~o)A dr. 
Sinced2f=O,o~n=O, and(do~)H=s w e o b t a i n D ( D f ) = ( r ' o s  �9 

4. C O N S T R A I N T S  I M P O S E D  BY PARTICLES OF ZERO M A S S  

Let p E P and let Po be the set of all points of P that can be joined to p 
by a smooth curve whose tangent vectors are all horizontal relative to w. In 
Kabayashi and Nomizu (1963) it is proved that Po is a C ~ immersed 
submanifold of P, and 7r: P0 ~ M is a principal bundle with group G O = (g 
E G I pgE Po}, called the holonomy group at p; 7r: Po ~ M is the holonomy 
bundle through p. The field strength s of w at any po E Po has values in the 
Lie algebra ~o of G o. Hence, the smaller G O is, the more "degenerate" s is. 
Indeed, if G O is finite, then s = 0. If G O = (e}, then it: P --, M is trivial as 
well, since Po is then the image of a global section of 7r: P --, M. Let G~ be 
the closure of Go; G~ is a Lie subgroup of G. Let Spec(G/Gr) be the 
spectrum of the Laplace operator on G/G~, as in Section 2. 

Theorem 4.1. For each ~t E Spec(G/G~), there is at least one r E  G(/I) 
such that 0 E  Spec(A~). 

Proof Setting H = G6 in Theorem 2.3, we see that there is r E  (~(/~) with 
Hom(Wr,(Gr)r) =/= O. Let v E (Gr) r, v v ~ 0, and d e f i n e f E  C(P, W~) by f ( P o g )  
=r(g-J)(v)  for any poEPo and gEG.  If pog=prg  ', then pr=pogg '-I 
whence gg'  - i E G O C G6 and r( g -  i )( v ) = r( g -  l )[ r( gg' - i )( v )] = r( g '  - J )( v ), 
and so f is well defined. Since TpPoDH p and f is constant on Po, we have 
Drf = (df) H = 0, and so A f =  ~rD~f = O. �9 
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Theorem 4.2. If 0 E Spec(Ar) for some rE  G, then c~E Spec(G/G~). 
With more precision, dim[C(P, Wr; 0)] : dim[(G~)r], where (G~)~ : 
(wE Wrlr(g) (w)= w for all gE  G~}. 

Proof. Let f E  C(P, W~; 0), and note that h(Drf, Drf)r = (A rf, f )~ = O, 
whence D~f = 0. Thus, f is constant on all horizontal curves, and so f is 
constant on P0. For any g E G O we have f ( p )  = f ( p g )  -- r( g -  i )f( p ), and by 
continuity this also holds for gE  G~; so f ( p )  E (G~)~. The map C(P, Wr; O) --, 
W~ given by fw ,  f ( p )  is injective, and by the proof of 4.1, its image is (GD)r, 
whence dim[C(P, W~;0)] = dim[(G~)r]. Then we see that 0E  Spec(A~) im- 
plies (G6)~ 4: 0, and Theorem 2.3 yields CrE Spec(G/G6). �9 

Remark. If G is connected, then r '  determines r. We have seen that 
c~ > 0 when r '  v ~ 0. Hence, assuming G is connected, c r > 0 if r is nontrivial. 
Thus, 0 E Spec(Ar) for some nontrivial rE  (~ implies 0 < CrE Spec(G/G6), 

�9 ' >~ Spec(G/G~) is infinite. Then Theorem 4.1 whence d x m ( G / G o ) ~ l ,  and 
gives us an infinite collection of sE  G for which 0 E Spec(As). 

5. LOWER BOUNDS ON MASS SPECTRA 

For an arbitrary rE  t~, we find a lower bound on Spec(Ar) in terms of 
the field strength (or curvature) ~ E  A2(P, 9), h M, and r. The lower bound 
involves three constants, which we now define�9 

For each p E  P, we have a linear map f~r(P): Wr--" X2( P' Wr)p ( =- the 
space of W~-valued 2-forms q0 on TpP such that q0n=q0) given by 
[f~r(p)(v)](X, Y) ---- r'(f~(X, r ) ) (v )  where r': ~ ~ Hom(W~, W~) comes from 
r: G--,U(W~). We define br(p)=max{b>~OIh]f~r(p)(v)lr>~blvlr for all 
vE  W~}, and br= m i n ( b ~ ( p ) i p E P } .  We say that f~ is r-nondegenerate if 
b r > 0; our lower bound on Spec(Ar) is positive only when b r > O. 

At each p E  P, we have another linear map (Sf~)~(p): W r --,-~l(p, W~) 
defined by [(SlY)r( p )( v)](X) = r'(Sf~(X))(v) where 8 is the covariant codif- 
ferential dual to D: ~l(p ,  9) --, ~2(p, 9). Define Y~(p) = min(b/> 
0lh I(~f~L(p)(v)[ r < bl vl~ for all v E  Wr}, and Y~ = max(Y~(p)l P E e}. Note 
that Y~ = 0 iff the Yang-Mills equation 8f~ = 0 holds. 

The third constant is obtained by considering the map f~r(p): 
XI(P, W~) ~ ~l(p,  W~) defined by [f~l~(p)(o)](X) = Zir'(f~(X, ei))(vi) where 
e I . . . . .  e, is an o.n. basis of lip and a=Y~vi| ~, v i E W  ~ [i.e., o ( X ) =  
Zjv~h( X, e~)]. A simple computation shows that f~l(p) is independent of the 
choice of o.n. basis. We define B~(p) = min {b >i 0 [h ]f~l( p)(o)] r ~< b h [ o[ r for 
all oE N(P, w~)p), and set Br = max(B~(p)l p E P } .  

Lemma 5.1. I f f E  C(P, W~), then ( r 'o  ~2)fE A2(p, W~), and 

8r[( r '~  )f] p = ( Sf~ )r( p )( f (  P )) + f~l~( P )( DJp ) 
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Proof Let e 1 . . . . .  e, be an o.n. basis of Hp. We may extend 
~r,(el) . . . . .  I r , (e , )  to an o.n. frame field [defined on a neighborhood of 
~r(p)] say E~ . . . . .  E" such that [E:,E~]=O at ~r(p). Let Ej . . . . .  E,  be the 
horizontal rifts of E~ . . . . .  E ' .  Note that ~r,([E~, Ej]):[E[,  Ej], whence 
[E i, Ej]p n = 0. A computation reveals that at p, we have 

8r[(r' o f~)f] (Ej): --Y.iEi[r'(f~( El, Ej))(f)] 

:- -- r'(~iEi[ ~ ( El, Ej ) ])( f )- E:'( f~( E~, Ej))(E~[ / ]) 

: r ' (8~(Ej ) ) (  f ) +  Y, ir'(f]( E j ,E i ) ) (E i [ f ]  ) 

=[ (8~2)r (p ) ( f (p ) ) ] (E: )+[~lr (p ) (Dfp)] (E j )  �9 

Theorem 5.2. Relative to r E  G, let m r be the smallest (necessarily 
nonnegative) number in Spec(Ar) (i.e., the smallest mass z of par- 
tides coming from r). Then b~<<. B r m r +  Y r v ~  r or equivalently, 

f~-;~>~�89 In the event the Yang-Mills 
equation holds (i.e., 8f~ = 0), we obtain m r >1 b2r/Br . 

Proof Let f E  C( P, Wr) with Ar f  : m J  and I l f l l r : l .  Then 

b2r =b2r il fll2r<- fvhlf~r(p)(f(p))12r#(p) = ( ( r ' o ~ ) ( f ) , ( r ' o f ~ ) ( f ) )  

= (DrDrf , ( r 'o f~) ( f ) )  = (Drf, Sr[(r 'o f])( f )])  

= fp (Dr fv ,~r (p) (Dr fv ) )#(P)  + f v ( D J p , ( 8 ~ ) , ( P ) ( f ( P ) ) ) t ~ ( P )  

(by Lemma 5.1) 

~ fp[Drfpl'l~'~Ir(p)(Drfp)[.(P) "~- fplDrfp['[(~'~)r(P)(f(p))l.(p) 

~ nr ll Dr f ll Z -t- Yr ll Or f ll ll f ll = Brmr + Yrf~r 

where we have used the definitions of b r, B r, and Y~, the Cauchy-Schwarz 
inequality, Lemma 3.5, and Corollary 3.4. �9 
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6. ADDITIONAL COMMENTS AND QUESTIONS 

(A) The case where G = U(1) = (ei~ (e.g., electromagnetism) 
deserves special consideration. For each integer k, let /~: U(1)~ U(C) 
[=U(1)I be the representation /~(ei~ = eikOI. The map 'I'E: Hom(e,e)--, 
C~176 is given by q~(zI)(ei~176 ik~ Since the 
eigenspaces of A u 0 ) = - - D  2 are all of the form %7(Hom(C,C))~ 
,t ,_~(Hom(e, e)), it follows from the Peter-Weyl theorem that (//Ik e Z ) is 
a complete set of mutually inequivalent unitary representations of U(1). 

The closed subgroups of U(1) are all finite and cyclic; the one of order 
k is Zk--(exp(i2rrm/k)lm=l,2 . . . . .  k}. If the holonomy group of ~o at 
p e P is Zlv, then 0 e  Spec(AE) for all k which are multiples of N, since k 2 
will then be an eigenvalue of the Laplace operator on U(1)/Z N and 
Theorem 4.1 applies. Conversely, if 0 e Spec(AE) for some k r 0, then by 
Theorem 4.2, k2eSpec[U(1)/G~] and so the holonomy group is ;E N for 
some N dividing k. 

Using the notation of Section 5, let B - -  = B~, b = b~, and Y--= Y~. Since 
the Lie algebra homomorphism/~' is just kl ' ,  we have BE= I klB, bE = I klb 
and YE=IklY. Consequently, Theorem 5.2 yields Ikl2b<-lklBmE+ 
IklY(-m--; or Iklb<BmE+gvrm-?,. This not only implies that m E > 0  for 
k :~ 0, but also m E--, oo as I kl --, oo provided b > 0. Consequently, if b > 0, 
then min(mEI I kl4: 0} exists and is positive. Interestingly, we have proved 
in Bleecker (1982) that the property b > 0 is generic if dim M~> 4. Hence, it 
is not surprising that all electrically charged particles seem to have mass no 
less than some fixed positive number. 

(B) An intriguing question is whether the characteristic numbers of the 
principal bundle P --) M can be determined from Spec(A) or Spec(Ar) for 
various r e  G. The terms of the asymptotic expansion of trace(e - /a)  (see 
Gilkey, 1975) will yield some information such as the total scalar curvature 
of (P, h), but characteristic numbers may be difficult to determine. Suppose 
P is trivial, say P = M • G, and h is the product metric tensor h m • k e. 
Then Spec(A)= ()kj(M)+ Cr[~j(M)e Spec(AM, ) and r e  G}, and it follows 
that Spec(Ar) = SpeC(AM), independent of r e  G. In the general case, if r 0 is 
the trivial unitary representation, then Spec(Ar0)=Spec(AM). Thus, if it 
happens that Spec(Ar) is independent of r, then necessarily Spec(Ar)= 
Spec(AM) for all r e  (~. In particular, 0 e Spec(Ar) and Theorem 4.2 implies 
Cre Spec(G/GD) for all r e  G, whence Spec(G/G~))= Spec(G). If we assume 
that the multiplicity of 0 in Spec(A~) is d r for all r e  G, we can conclude 
(using Theorems 4.2 and 2.3) that Q*: LE(G/G~)--, L2(G) is an isomor- 
phism, whence G; = {e} = G O and P would then be a product bundle with 
product metric. Without any assumptions on multiplicities, it might still be 
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possible to prove that the independence of  Spec(Ar) on r implies P and h 
are products,  but  we leave this prospect  to the interested reader. 

(C) The discussion in (B) shows that when P = M • G with a product  
metric, all particles share a c o m m o n  mass 2 spectrum regardless of  the 
representation. In the general case, Spec(Ar) will depend on r. We expect 
nature to favor those particles with representations r for which m r ~  
minSpec(Ar)  is small; it takes less energy to make particles with less mass. 
Thus, in view of  Theorem 3.3, we see that particles coming from a 
representation r should be comparat ively prevalent if there is an eigenspace 

"V(~.i) of A on C~176  which decomposes in such a way that r is a 
subrepresentat ion and ~,. -- c r is comparat ively small. Since the eigenvalues 
of  A can vary widely depending on h M and ~o, we see that the populat ions  of  
elementary particles may  be dictated in an incalculable (yet theoretically 
precise) manner  by the geometry of  (P ,  h). In order  to appreciate the 
difficulty in comput ing  eigenvalues or  eigenspaces even in fairly simple 
circumstances,  the reader is invited to compute  Spec(Ar) for arbitrary r E  (~ 
in the case where ~o is a self-dual Yang-Mi l l s  field for a principal G-bundle 
of  given index over S 4. 
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